World leader in single-atom catalysts relies on CLS to drive advances in field

"Fundamental SAC research would be impossible without access to world-class facilities like the CLS....” Dr. Peng Zhang, Dalhousie University

The fascinating future of metal tellurate materials

International research team determines structure of new material with potential uses in solar energy, batteries, catalysis

Findings pave way for longer-lasting solid-state batteries

NRC researchers identify root causes of rapid loss of capacity in solid-state batteries

Using pulp and paper waste to scrub carbon from emissions

McGill researchers develop new green technology

From cannabis harvest to flexible solar panels

University of Ottawa researchers using CLS to develop next-gen electronic devices

Developing batteries with 10 times the energy storage

Researchers from Western University gain deeper understanding of all-solid-state lithium-sulfur batteries, which could lead to EVs that cost less to purchase, travel further on a single charge, and are safer to drive.

Combining metals for cheaper, more stable fuel cells

Researchers from Western University have discovered that incorporating other metals reduces the amount of platinum that is required to produce energy, and results in a more stable catalyst for fuel cells.

A new approach to longer-lasting, faster-charging batteries

Researchers from McGill University, Université du Québec à Montreal develop new approach to making inexpensive batteries that hold large amounts of charge and recharge quickly.

Nanoscale rust: The future of magnets?

U of M researcher studying how to make magnets cheaper, easier to produce

Battling antibiotic-resistant pathogens one door knob at a time

New antimicrobial coating could revolutionize cleaning methods

New catalyst twice as selective, could make chemical production cleaner and cheaper

Researchers demonstrated a new electrically powered catalyst that is twice as efficient as baseline materials at producing acetic acid, which has multiple industrial applications.

Researchers identify new material for creating electronic devices

Efficiently building a better diode one layer at a time

Meeting high-tech industry’s need for magnetic materials

Researchers from the University of British Columbia (UBC) have discovered a new material made of common elements that may one day make our everyday electronics, such as cellphones, cheaper and more environmentally friendly.

Better batteries for a better future

A team of scientists from the United States, Canada and Germany are tackling one of the largest challenges of our generation — reliable energy storage.

Producing hydrogen from seawater

McGill scientists have identified potential method for producing hydrogen from the oceans.

Renewable energy solutions that don’t break the bank

Finding sustainable sources of renewable energy will help combat climate change and offer consumers access to reliable sources of fuel.

X-rays allow us to quickly develop high-strength steels

Synchrotron analyses could be used to fast-track the development of novel high-strength steel designs.

Using pancake stacks to make better electronics

Scientists are working to develop advanced electronics by taking inspiration from a breakfast favourite and stacking molecules like pancakes.

Reducing potholes in cold climates

Could recycled materials help to build durable roads in areas with significant temperature swings like Saskatchewan?

Recreating outer space on earth

USask professor John Tse is using our BXDS beamlines for insight into ice formation in extreme environments

Developing new alloys for hydrogen fuel and catalysis

Canadian researchers are using synchrotron light to help develop new alloys with helpful properties.

A leap forward for affordable solar power

University of Toronto researchers used the CLS to gain insight into solar cell material in hopes to make solar power more efficient and affordable.

Inside rechargeable batteries | Video

MIT Scientists are using CLS to understand how the chemistry of rechargeable batteries shifts and help guide battery design.

Engine additive could help save on gas

A research team from Texas used the CLS to develop a new additive for automotive engine oil that reduces harmful emissions, increases fuel efficiency and improves durability.

Perovskite solar cells | Video

University of Toronto's Sam Teale discusses his research on healing defects in perovskites used in solar cells - using the BXDS sector at the CLS synchrotron.

Going organic

uOttawa team are realizing the limitless possibilities of wearable electronics using CLS synchrotron techniques.

UBC team finds oxide material behaves similarly to its metal counterpart

Quantum materials are the basis for many emerging quantum technologies, but the extent to which individual elements are understood depends on scientists’ ability to produce these materials in the lab.

Preparing for the next generation of batteries

University of Manitoba researchers identified the potential to use polymer composites as electrode matrices in lithium-ion batteries.

Bright light and powerful math leading the way to better LED lighting

University of Saskatchewan scientists have worked at the Canadian Light Source develop deep insight into two types of light emitting crystals for next-generation LEDS.

Turning straw into gold?

University of Calgary researchers have made advances towards using the power of the sun to convert biomass like wheat straw into hydrogen fuel and value-added biochemicals.

Powering the future of clean energy

Canadian researchers work towards harnessing the potential of hydrogen as an energy source for everyday use.

Creating the best TV screen yet

A breakthrough in blue quantum dot technology could make the colours on our TVs and screens more pristine. University of Toronto researchers used the CLS to bring this technology closer to our homes.

Longer-lasting cell phone batteries

Phosphorene is attracting a lot of attention lately in the energy and electronics industries, and for good reason. Western University researchers are using the material to help batteries last longer.

Helping to neutralize greenhouse gases

Researchers from the University of Waterloo used the CLS to create an affordable and efficient electrocatalyst that can transform carbon dioxide into valuable chemicals and could help businesses.

A highly promising sustainable battery for electric vehicles

McGill University researchers show that affordable materials could prove key for improving the batteries used in electric vehicles.

Enhanced tandem solar cells set new standard in converting light into electricity

A collaboration between U of T Engineering and King Abdullah University of Science and Technology has created two-layered solar cells that successfully combine traditional silicon with new perovskite technology.

The future of electronics is bendy

Scientists used the Canadian Light Source to discover new materials that could help make electronics stretchable.

Using crystal materials to improve electronic devices and artificial intelligence

Certain types of rare earth materials can be manipulated to either conduct or resist electricity, a trait that could make it easier to manufacture electronics or even emulate nerve cells, according to research from an international team of scientists using the CLS.

A path to carbon-neutral plastics

Improved catalyst transforms renewable electricity and waste CO2 into ethylene, one of the world’s most widely-used commodity chemicals.

Canadian researchers extend the life of rechargeable batteries

Carbon coating that extends lithium ion battery capacity by 50% could pave the way for next-generation batteries in electric vehicles.

Using reed waste for sustainable batteries

Montreal researchers hope to use the CLS to help create bio-based, high-performance fuel cells and metal-air batteries, which could be used in electric cars.

Improving engine performance and fuel efficiency

A study conducted at the Canadian Light Source suggests reformulating lubricating oils for internal combustion engines could significantly extend the life of your vehicle.

Synchrotron researchers uncover lost images from the 19th century

Researchers, using the CLS, have improved the process of restoring centuries-old daguerreotypes.

Peering inside blown-up batteries

To understand how battery pillowing happens, CLS scientist Toby Bond performed highly detailed CT scans on lithium-ion batteries before and after pillowing.

Light source helps development of safe and durable high-temperature lithium-sulfur batteries

Researchers have developed safe and durable high-temperature Li-S batteries using by a new coating technique called molecular layer deposition (MLD) technology for the first time.

Saving sunshine for a rainy day: New catalyst offers efficient storage of alternative energies

Researchers from the University of Toronto have designed a more efficient catalyst for energy storage by splitting water into hydrogen and oxygen.

Canadian physicists discover new properties of superconductivity

An international team of physicists has come one step closer to understanding the mystery of how superconductivity, an exotic state that allows electricity to be conducted with zero resistance, occurs in certain materials.

Foldable tablets, wrap-around TVs, and the next generation of electronics

With applications that are nothing short of science fiction, it is no wonder that graphene-based research continues to fascinate scientists.

Stronger, Better, Solar Cells

About half of Canada’s residential electricity needs could be met if solar panels were installed on the roofs of residential buildings. At a single atom thick, graphene was the first 2D crystal ever discovered. It is a great candidate for solar cells because it is transparent, stronger than steel, and a better conductor than copper. It also can’t corrode. Researchers from the University of Saskatchewan aim to harness these qualities into a more efficient solar cell by modifying the material with oxygen to make a better charge collector. To do this, they take a close look at graphene oxide’s unique electronic signature.