ACKNOWLEDGEMENTS

FUNDING PARTNERS

The Canadian Light Source thanks all of our funding partners for their commitment to the advancement of science and innovation.

TABLE OF CONTENTS

SCIENCE DIRECTOR’S MESSAGE . 1
2019 SCIENCE HIGHLIGHTS . 3
HEALTH 3
AGRICULTURE 5
ENVIRONMENT 8
ADVANCED MATERIALS 12
PUBLICATIONS 16

Canadian Light Source Research Report 2019
Editor: Victoria Martinez
© 2020 Canadian Light Source Inc.
All rights reserved.
www.lightsource.ca

Layout and cover design: Reach Communications
Cover: Protein structure of Pf25s and bound antibodies captured at CMCF. See page 4.
This is my first message as Science Director of the CLS and I want to convey my experience one year into my appointment. I have been impressed by the dedication, perseverance and efforts of the entire CLS staff as well as the support and encouragement I have received since I joined the CLS team. Coming from a different academic and research environment I appreciate the cooperation, professionalism and team efforts of the entire CLS staff. No wonder that the science output from this team is so impressive and impactful. This past year, as always, the CLS has produced enormously diverse research supporting the equally diverse user base in Canada and beyond.

Indeed, this report highlights some of the most exciting research in health, agriculture, energy and the environment, and advanced materials from the last year. In health, we see new work on converting donated blood to a universal blood type. In agriculture, researchers have been working on new approaches for nutrient analysis of vital food crops. Materials researchers have made great strides in electrocatalytic conversion of greenhouse gases to useful products, such as engine fuel. And environmental researchers are pushing our understanding of the carbon cycle in our soils.

Our research community continues to grow and thrive. We closed 2019 with a record number of proposals for the January-June 2020 cycle, a record we hope to build on in coming years. With all of our Phase III beamlines – BioXAS, QMSC and BXDS – now in scientific commissioning and demonstrating outstanding results, we will build on the already strong collaborations we have with universities, government and industry, and the exciting new avenues of inquiry these beamlines will enable.

This was a landmark year for our burgeoning agricultural science program. The CLS was the first synchrotron to define agricultural science as one of its strategic priorities, due to the combination of its unique capabilities, in-house expertise, and close proximity to outstanding agricultural science infrastructure. In addition to the research published on soils, plant diseases and plant breeding, we hosted the first international Pan-American Light Sources for Agriculture (PALSA) conference, showcasing the value of light sources for agricultural research and connecting a growing global research community.

Our educational programming continues to reach new audiences, bringing synchrotron science to curious young minds across Canada. In partnership with the University of Saskatchewan’s Mistik Askiwin Dendrochronology Laboratory (MAD Lab), the new Trans-Canadian Research and Environmental Education (TREE) program combines CLS techniques for chemical analysis and MAD Lab expertise in the science of tree rings, to paint a detailed picture of how trembling aspen are doing in communities throughout Canada.

2019 was also an important year for looking to the future of Canadian synchrotron science, as our accelerator physicists developed preliminary designs for CLS 2.0, the next facility to serve our strong research community. We are also working with the Canadian synchrotron user community to develop the plans that will maintain our global competitiveness in synchrotron science.

We ended the fiscal year on a darker note, with the global COVID-19 crisis that has affected every corner of the world. As I write this, after being dark for several weeks to protect our staff and users, the CLS is restarting operations to bring the light back to help the research community to fight the war against this virus. We also had a successful special call for proposals for COVID-19 related research with users across Canada responding. For me, this special call is very symbolic for everyone at CLS, Canada needs to have the light shine again. We want to be part of the global war against this virus and our role is to use our beamlines to know more about our enemy.

Finally, I extend our gratitude to our funding partners for continuing to support our operations and the world-caliber science of the over 1,000 Canadian scientists that use CLS every year. Thank you.

Gianluigi Botton
Science Director

Throughout this report, the following symbols will be used to indicate the techniques of highlighted research.

IMAGING SPECTROSCOPY DIFFRACTION
HEALTH

Nebulized hypertonic saline triggers nervous system-mediated active liquid secretion in cystic fibrosis swine trachea

Xiaojie Luan, Julian S. Tam, George Belev, Santosh Jagadeeshan, Brendan Murray, Noman Hassan, Terry E. Machen, L. Dean Chapman & Juan P. Ianowski

BMIT

Inhaled hypertonic saline (HTS) treatment is used to improve lung health in patients with cystic fibrosis (CF). The current consensus is that the treatment generates an osmotic gradient that draws water into the airways and increases airway surface liquid (ASL) volume. However, there is evidence that HTS may also stimulate active secretion of ASL by airway epithelia through the activation of sensory neurons. The researchers tested the contribution of the nervous system and airway epithelia on HTS-stimulated ASL height increase in CF and wild-type swine airway. We used synchrotron-based imaging to investigate whether airway neurons and epithelia are involved in HTS treatment-triggered ASL secretion in CFTR−/− and wild-type swine. We showed that blocking parasympathetic and sensory neurons in airway resulted in ~50% reduction of the effect of HTS treatment on ASL volume in vivo. Incubating tracheal preparations with inhibitors of epithelial ion transport across airway decreased secretory responses to HTS treatment. CFTR−/− swine ex-vivo tracheal preparations showed substantially decreased secretory response to HTS treatment after blockage of neuronal activity. Our results indicated that HTS-triggered ASL secretion is partially mediated by the stimulation of airway neurons and the subsequent activation of active epithelia secretion; osmosis accounts for only ~50% of the effect.

Cystic fibrosis is one of the most common fatal genetic diseases affecting Canadian children and young adults. This study shows that inhaled hypertonic saline treatment stimulates the nervous system, which in turn triggers airway surface liquid secretion.

https://doi.org/10.1038/s41598-018-36695-4
An enzymatic pathway in the human gut microbiome that converts A to universal O type blood

Peter Rahfeld, Lyann Sim, Haisle Moon, Iren Constantinescu, Connor Morgan-Lang, Steven J. Hallam, Jayachandran N. Kizhakkedathu & Stephen G. Withers

CMCF

Access to efficient enzymes that can convert A and B type red blood cells to ‘universal’ donor O would greatly increase the supply of blood for transfusions. Here we report the functional metagenomic screening of the human gut microbiome for enzymes that can remove the cognate A and B type sugar antigens. Among the genes encoded in our library of 19,500 expressed fosmids bearing gut bacterial DNA, we identify an enzyme pair from the obligate anaerobe Flavonifractor plautii that work in concert to efficiently convert the A antigen to the H antigen of O type blood, via a galactosamine intermediate. The X-ray structure of the N-acetylgalactosamine deacetylase reveals the active site and mechanism of the founding member of an esterase family. The galactosaminidase expands activities within the CAZy family GH36. Their ability to completely convert A to O of the same rhesus type at very low enzyme concentrations in whole blood will simplify their incorporation into blood transfusion practice, broadening blood supply.

Cross-linked elastin-like polypeptide membranes as a model for medial arterial calcification

Ophélie Gourgas, Lisa D. Muiznieks, Dainelys Guadarrama Bello, Antonio Nanci, Simon Sharpe, Marta Cerruti

SXMRB

This paper presents a simplified laboratory model that mimics the formation of the mineral deposits that harden arteries and lead to several adverse outcomes including heart attacks and strokes.

Calcium phosphate minerals deposit on the elastin-rich medial layers of arteries in the majority of seniors, diabetic, and chronic kidney disease patients, causing severe cardiovascular complications. There is no cure for medial calcification, and the mechanism of mineral formation on elastin layers is unknown. Here we propose cross-linked elastin-like polypeptide membranes as models to study medial calcification. Calcium phosphates deposit first on fibers and filaments and then spread to globular structures present in the membranes. Mineral phase evolution analyzed by near-edge X-ray spectroscopy matches that previously observed in a mouse model of medial calcification, showing that this simple system captures some of the key in vivo findings. This work shows how minerals form and evolve upon nucleation on elastin and provides an in vitro model that can be tuned to study hypotheses related to arterial calcification mechanisms and test drugs to stop or revert mineralization.

A membrane made of elastin-like peptide immersed in simulated body fluids. The blue color is due to the crosslinker, genipin.

https://doi.org/10.1021/acs.biomac.9b00417

Half of all Canadians will either need blood or know someone who needs it in their lifetime. This work describes a mechanism whereby A and B type red blood cells can be converted to universal-donor O type, which would greatly increase the supply of blood for transfusions.
Potent antibody lineage against malaria transmission elicited by human vaccination with Pfs25

Transmission-blocking vaccines have the potential to be key contributors to malaria elimination. Such vaccines elicit antibodies that inhibit parasites during their development in Anopheles mosquitoes, thus breaking the cycle of transmission. To date, characterization of humoral responses to Plasmodium falciparum transmission-blocking vaccine candidate Pfs25 has largely been conducted in pre-clinical models. Here, we present molecular analyses of human antibody responses generated in a clinical trial evaluating Pfs25 vaccination. From a collection of monoclonal antibodies with transmission-blocking activity, we identify the most potent transmission-blocking antibody yet described against Pfs25: 2544. The interactions of 2544 and three other antibodies with Pfs25 are analyzed by crystallography to understand structural requirements for elicitation of human transmission-blocking responses. Our analyses provide insights into Pfs25 immunogenicity and epitope potency, and detail an affinity maturation pathway for a potent transmission-blocking antibody in humans. Our findings can be employed to guide the design of improved malaria transmission-blocking vaccines.

https://doi.org/10.1038/s41467-019-11980-6

In 2017 alone, there were an estimated 219 million malaria cases, leading to approximately 435,000 deaths worldwide. This paper provides the first detailed molecular analysis of the structures of a candidate transmission-blocking vaccine.
A look into the past: Tracing ancient sustainable manuring practices by thorough P speciation of northern European anthrosols

Andre Aksel, Karen Baumann, Yongfeng Hu, Peter Leinweber

SXMB

Regionally restricted, humus-rich topsoils in Southwest Norway and the Baltic Sea region of Germany and Denmark were formed by inputs of various amendments (combustion residues and marine biomass) and, therefore, were classified as Anthrosols. For a deeper insight into the ancient management practices, we investigated the elemental and P-composition in the upper and underlying horizons from 12 soil profiles in the Jæren region, at the islands of Karmøy and Feøy (Norway), at the island of Fehmarn and the peninsula of Wagrien (Germany), and at the islands of Poel (Germany) and Sjaelland (Denmark). We used aqua regia digestion and the complementary methods of sequential P fractionation, phosphorus K-edge X-ray absorption near edge structure (P-XANES) spectroscopy, and 31P nuclear magnetic resonance (31P-NMR) spectroscopy. Results were compared with the composition of differently amended and/or un-amended soils from other studies. In addition, archaeological literature was used to confirm possible inputs of specific P-containing amendments in ancient agriculture. The P composition from SF of the Anthrosols in Norway (44% NaOH-P > 18% NaOH-Po > 14% NaHCO₃-P > 12% H₂SO₄-P > 7% NaHCO₃-Po > 3% residual-P = 3% resin-P) and complementary archaeological literature provided strong indication for the use of peat, sheep manure, compost, and human excreta. The Anthrosols in the Jæren region have been formed from peat, which had been used as alternative bedding material and had been mixed with sheep and/or cattle manure. The P-composition in the Anthrosols at the island of Fehmarn and at the peninsula of Wagrien (42% H₂SO₄-P > 25% residual-P > 10% NaOH-P > 8% NaOH-Po > 6% NaHCO₃-P, and NaHCO₃-P > 4% resin-P) resulted from the application of domestic cattle manure. This was strongly supported by archaeological findings of cattle bones in this region, as well as high proportions of Ca-P, as confirmed by P-XANES. The predominance of Po in the Anthrosols at the island of Poel and Sjaelland (31% NaOH-P > 23% NaHCO₃-P > 21% H₂SO₄-P > 11% NaOH-Pi > 8% NaHCO₃-P > 4% residual-P > 4% resin-P, in agreement with results from 31P-NMR) indicated low ancient inputs of various excrement or manure. This was supported by low livestock history at the island of Poel. In conclusion, these agricultural techniques can be considered as sustainable P recycling and soil amendment since they improved soil fertility for many generations.

Analysis of soil samples from 12 sites in Germany, Norway and Denmark, with uniquely long-lasting fertility. Soil profiles indicated ancient applications of peat, animal manure, composts and biochar.

Morphological comparison of the soil profiles of the Northern Europe Anthrosols under this study and various deep, dark humus-rich soils from Europe and Brazil. (a) Glaser et al. (2001); (b) Chendev et al. (2015); (c) dbges.de (2019)

https://doi.org/10.3390/soilsystems03040072
Evaluation of X-Ray fluorescence spectroscopy as a tool for nutrient analysis of pea seeds

Ramandeep K. Bamraha, Perumal Vijayana, Chithra Karunakaran, David Muir, Emil Hallin, Jarvis Stobbs, Barry Goetz, Michael Nickerson, Karen Tanino and Thomas D. Warkentin

IDEAS

This research was conducted to evaluate the utility and reliability of X-ray fluorescence (XRF) spectroscopy to analyze macro- (K and Ca) and micronutrients (Mn, Fe, Cu, Zn, and Se) in pea (Pisum sativum L.) seeds. The pea seed samples were ground into flour and pelleted to collect the XRF spectra. 73 pea seed samples were selected to cover the expected concentration ranges for each element to develop calibration curves by correlating the XRF results with atomic absorption spectroscopy (AAS). The XRF results were validated by a systematic comparison of data obtained from AAS on a set of 80 additional and independent pea seed samples. Element concentrations were also predicted using the fundamental parameter approach collectively for 153 samples. For all the calibration curves, the R² value was >0.8, except for K (0.54). For Mn, Fe, Cu, Zn, and Se, the XRF predictions were similar to AAS measurements at a 95% confidence level. Similar results were obtained with the fundamental parameter approach except for Fe for which significant bias of ~6 mg kg⁻¹ was calculated. Except for K, R value for all the validation curves was >0.85. Thus, the results obtained using XRF and the fundamental parameter approach were statistically not different from the AAS method. This study demonstrated that the XRF technique is a fast and reliable, nondestructive, and noninvasive analytical tool for mineral analysis, particularly for transition metals, does not produce waste, and requires no chemical reagents.

Pea proteins are the main ingredient in protein based meat alternative foods, which is one reason that understanding the nutritional profiles of the legumes is commercially important. This work is a proof-of-concept for X-ray fluorescence as a nutrient profiling technique.
High throughput nutritional profiling of pea seeds using Fourier transform mid-infrared spectroscopy

Chithra Karunakaran, Perumal Vijayan, Jarvis Stobbs Ramandeep Kaur Bamrah, Gene Arganosa, Thomas D. Warkentin

Mid-IR

Seed samples from 117 genetically diverse pea breeding lines were used to determine the robustness of Fourier transform mid-infrared spectroscopy (FT-MIR) for the rapid nutritional profiling of seeds. The FT-MIR results were compared to wet chemistry methods for assessing the concentrations of total protein, starch, fiber, phytic acid, and carotenoids in pea seed samples. Of the five partial least square regression models (PLSR) developed, protein, fiber and phytic acid concentrations predicted by the models exhibited correlation coefficients greater than 0.83 when compared with data obtained using the wet chemistry methods for both the calibration and validation sets. The starch PLSR model had a correlation greater than 0.75, and carotenoids had correlation of 0.71 for the validation sets. The methods implemented in this research show the novelty and usefulness of FT-MIR as a simple, fast, and cost-effective technique to determine multiple seed constituents simultaneously.

https://doi.org/10.1016/j.fochx.2019.100055

The effects of sodium reduction on the gas phase of bread doughs using synchrotron X-ray microtomography

Xinyang Sun, Martin G. Scanlon, Reine-Marie Guillermic, George S. Belev, M. Adam Webb, Serdar Aritan, Michael T. Nickerson, Filiz Koksel

BMIT

Globally, the bakery industry has a target of reducing sodium content in bread products. However, removing salt results in changes in the quality of bread through effects on dough gas phase during the breadmaking process. Using synchrotron X-ray microtomography, the objective of this study was to investigate how sodium reduction induced changes in the gas phase parameters (i.e., gas volume fraction, bubble size distribution (BSD) and its time evolution) of non-yeasted doughs made from a wide range of formulations (i.e., wheat cultivar and water content) prepared with different mixing times. As salt content was reduced, a lower gas volume was retained in the dough by the end of mixing. Less gas bubbles were also retained if doughs were prepared from a stronger wheat cultivar, higher water content, and/or mixed for a shorter time. Rates of change in the median (R0) and the width (ε) of the fitted lognormal radius dependence of bubble volume fraction (BVF(R)) indicated that reduced sodium content permitted disproportionation to proceed more rapidly. Higher water content or longer mixing time also resulted in faster disproportionation, indicating that water content and mixing time can be manipulated as a means of increasing bubble stability against disproportionation during low-sodium breadmaking. An examination of relative changes in dough gas phase parameters arising from sodium reduction demonstrated that wheat cultivar, water content and mixing time all affected doughs’ tolerance to sodium reduction. Therefore, attainment of good bread crumb cell structure in low-sodium bread formulas is a function of salt’s effects on dough rheology in addition to its effect on yeast activity, so that dough formulation and mixing conditions also need to be considered.

https://doi.org/10.1016/j.foodres.2019.108919
Effects of bio-additives on the physicochemical properties and mechanical behavior of canola hull fuel pellets

Ramin Azargohar, Sonil Nanda, Kang Kang, Toby Bond, Chithra Karunakaran, Ajay K. Dalai, Janusz A. Kozinski

Agricultural residues can be converted to value-added products such as fuel pellets. Bio-based additives, including alkali lignin, glycerol and l-proline were used for binding formulation of canola hull fuel pellets. The binding formulation was optimized to produce pellet with the mechanical durability (by drop test) of 99%, relaxed density of 1,110 kg/m³, and energy density of 18,603 MJ/m³. l-proline showed the best performance in the enhancement of mechanical properties of pellet when compared with other two amino acids. Comparing with pure glycerol, use of crude glycerol decreased compression energy required for pelletization, but resultant pellet had lower tensile strength. SEM and light microscopy showed the effects of lacking moisture, lignin and l-proline in the formulation. Synchrotron-based computed tomography was used for 3D imaging of fuel pellets yielding estimated porosity values over a range of 1.3–5.7% for different fuel pellets. The effects of pelletization operating conditions were also investigated on the pellets.

Canola is one of the most important oilseed crops in Canada and worldwide. Learning how to efficiently recycle byproducts of production into fuel is very important for our environment.

https://doi.org/10.1016/j.renene.2018.08.003
A method for redox mapping by confocal micro-X-ray Fluorescence Imaging: Using chromium species in a biochar particle as an example

Peng Liu, Carol J. Ptacek, David W. Blowes, Y. Zou Finfrock, Mark Steinepreis, Filip Budimir

CLS@APS

Redox mapping of solid-phase particles has been used for speciation mapping of near-surface materials or within grains through the use of thin-sections without depth information. Here, a procedure is presented for data collection and processing of depth-dependent redox mapping within solid particles using confocal micro-X-ray fluorescence imaging (CMXRFI). The procedure was applied to a biochar particle that was reacted with Cr(VI)-spiked water. The total Cr distribution was first obtained at an above-edge energy of the K-edge, and showed that Cr was primarily distributed near the surface of the particle. Redox mapping was conducted at 33 representative energies and linear combination fitting (LCF) was performed for the 33 data points from each pixel. The results indicate Cr(III) is the primary species with fractions ranging from 0.6 to 1 and that this fraction is greater in the interior pixels of the particle than at the surface; in contrast, the Cr(VI) fraction is greater at the surface than for interior pixels. The results likely indicate Cr(VI) was first adsorbed and diffused into the biochar, and then reduced to Cr(III). With more Cr(VI) adsorption and the exceedance of the reduction potential of the biochar, remaining Cr(VI) was accumulated on the surface. The redox mapping method was validated by micro-X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy (XPS) results. This demonstration indicates the developed method combined with CMXRFI can be used to delineate the distribution of different oxidation states of an element within an intact particle or layer.

https://doi.org/10.1021/acs.analchem.8b05718
Interactive toxicity of triclosan and nano-TiO₂ to green alga *Eremosphaera viridis* in Lake Erie: A new perspective based on Fourier Transform Infrared Spectromicroscopy and synchrotron-based X-ray Fluorescence Imaging

Xiaying Xin, Gordon Huang, Chunjiang An, Renfei Feng

VESPERs

This study explored the toxicity of triclosan in the presence of TiO₂ P25 to the green alga *Eremosphaera viridis* in Lake Erie. Multiple physicochemical end points were conducted to perform a comprehensive analysis of the toxic effects of individual and combined pollutants. Fourier transform infrared spectromicroscopy and synchrotron-based X-ray fluorescence imaging were first documented to be applied to explore the distribution variation of macromolecules and microelements in single algal cells in interactive toxicity studies. The results were different based on different triclosan concentrations and measurement end points. Comparing with individual pollutants, the toxicity intensified in lipids, proteins, and oxidative stress at 1000 and 4000 μg/L triclosan in the presence of P25. There were increases in dry weight, chlorophyll content, lipids, and catalase content when cells were exposed to P25 and 15.625 μg/L triclosan. The toxicity alleviated when P25 interacted with 62.5 and 250 μg/L triclosan compared with triclosan-only exposure. The reasons could be attributed to the combination of adsorption, biodegradation, and photocatalysis of triclosan by algae and P25, triclosan dispersion by increased biomass, triclosan adherency on algal exudates, and triclosan adsorption site reduction on algae surface owing to P25’s taking over. This work provides new insights into the interactive toxicity of nanoparticles and personal care products to freshwater photosynthetic organisms. The findings can help with risk evaluation for predicting outcomes of exposure to mixtures and with prioritizing further studies on joint toxicity.

Triclosan is a common antimicrobial used in soaps and other personal care products, while titanium dioxide is found in many cosmetic products, including sunscreens. Both are of concern in aquatic environments, and this study explores their combined effect on green algae.

The distribution of major bands for lipids and proteins in an individual algal cell. (A) 3000-2800 cm⁻¹ C-H stretch in acyl from fatty acids/lipids; (B) ~1740 cm⁻¹ C=O in ester and ester fatty acids; (C) 1724-1585 cm⁻¹ C=O stretch of Amide I.

https://doi.org/10.1021/acs.est.9b03117
Dissolved organic matter sorption and molecular fractionation by naturally occurring bacteriogenic iron

Tyler D. Sowers, Kathryn L. Holden, Elizabeth K. Coward, Donald L. Sparks

Iron (oxyhydr)oxides are highly reactive, environmentally ubiquitous organic matter (OM) sorbents that act as mediators of terrestrial and aqueous OM cycling. However, current understanding of environmental iron (oxyhydr)oxide affinity for OM is limited primarily to abiogenic oxides. Bacteriogenic iron (oxyhydr)oxides (BIOs), common to quiescent waterways and soil redox transitions, possess a high affinity for oxyanions (i.e., arsenate and chromate) and suggests that BIOs may be similarly reactive for OM. Using adsorption and desorption batch reactions, paired with Fourier transform infrared spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry, this work demonstrates that BIOs are capable of sorbing leaf litter-extracted dissolved organic matter (DOM) and Suwannee River Humic/Fulvic Acid (SRHA/SRFA) and have sorptive preference for distinct organic carbon compound classes at the biomineral interface. BIOs were found to sorb DOM and SRFA to half the extent of 2-line ferrihydrite per mass of sorbent and was resilient to desorption at high ionic strength and in the presence of a competitive ligand. We observed the preferential sorption of aromatic and carboxylic-containing species and concurrent solution enrichment of aliphatic groups unassociated with carboxylic acids. These findings suggest that DOM cycling may be significantly affected by BIOs, which may impact nutrient and contaminant transport in circumneutral environments.

https://doi.org/10.1021/acs.est.9b00540
Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper

CLS@APS

The renewable-energy-powered electrocatalytic conversion of carbon dioxide and carbon monoxide into carbon-based fuels provides a means for the storage of renewable energy. We sought to convert carbon monoxide—an increasingly available and low-cost feedstock that could benefit from an energy-efficient upgrade in value—into n-propanol, an alcohol that can be directly used as engine fuel. Here we report that a catalyst consisting of highly fragmented copper structures can bring C1 and C2 binding sites together, and thereby promote further coupling of these intermediates into n-propanol. Using this strategy, we achieved an n-propanol selectivity of 20% Faradaic efficiency at a low potential of −0.45 V versus the reversible hydrogen electrode (ohmic corrected) with a full-cell energetic efficiency of 10.8%. We achieved a high reaction rate that corresponds to a partial current density of 8.5 mA cm⁻² for n-propanol.

https://doi.org/10.1038/s41929-019-0225-7

This work address the active site and formation pathway of copper electrocatalysts to convert carbon dioxide and carbon monoxide into n-propanol, an alcohol that can be directly used as engine fuel.
Photochemically cross-linked quantum well ligands for 2D/3D perovskite photovoltaics with improved photovoltage and stability

Andrew H. Proppe, Mingyang Wei, Bin Chen, Rafael Quintero-Bermudez, Shana O. Kelley, Edward H. Sargent

HXMA

The deployment of perovskite solar cells will rely on further progress in the operating and ambient stability of active layers and interfaces within these materials. Low-dimensional perovskites, also known as perovskite quantum wells (PQWs), utilize organic ligands to protect the perovskite lattice from degradation and offer to improve device stability; combining 2D and 3D perovskites in heterostructures has been shown to take advantage of the high efficiency of the majority 3D active layers and combine it with the improved stability of a thin 2D top layer.

Prior PQWs have relied on relatively weak interwell van der Waals bonding between hydrophobic organic moieties of the ligands. Here we instead use the ligand 4-vinylbenzylammonium to form well-ordered PQWs atop a 3D perovskite layer. The ligands vinyl group is activated using UV light which photochemically forms new covalent bonds among PQWs. UV-cross-linked 2D/3D devices show improved operational stability as well as improved long-term dark stability in air: they retain 90% of their initial efficiency after 2300 h of dark aging compared to a retention of 20% of performance in the case of 3D films. The UV-cross-linked PQWs and 2D/3D interfaces reduce device hysteresis and improve the open-circuit voltages to values up to 1.20 V, resulting in more efficient devices (PCE of up to 20.4%). This work highlights the exploitation of the chemical reactivity of PQW ligands to tailor the molecular properties of PQW interfaces for improved stability and performance in 2D/3D perovskite photovoltaics.

Photochemically cross-linked quantum well ligands for 2D/3D perovskite photovoltaics with improved photovoltage and stability

Andrew H. Proppe, Mingyang Wei, Bin Chen, Rafael Quintero-Bermudez, Shana O. Kelley, Edward H. Sargent

HXMA

The deployment of perovskite solar cells will rely on further progress in the operating and ambient stability of active layers and interfaces within these materials. Low-dimensional perovskites, also known as perovskite quantum wells (PQWs), utilize organic ligands to protect the perovskite lattice from degradation and offer to improve device stability; combining 2D and 3D perovskites in heterostructures has been shown to take advantage of the high efficiency of the majority 3D active layers and combine it with the improved stability of a thin 2D top layer.

Prior PQWs have relied on relatively weak interwell van der Waals bonding between hydrophobic organic moieties of the ligands. Here we instead use the ligand 4-vinylbenzylammonium to form well-ordered PQWs atop a 3D perovskite layer. The ligands vinyl group is activated using UV light which photochemically forms new covalent bonds among PQWs. UV-cross-linked 2D/3D devices show improved operational stability as well as improved long-term dark stability in air: they retain 90% of their initial efficiency after 2300 h of dark aging compared to a retention of 20% of performance in the case of 3D films. The UV-cross-linked PQWs and 2D/3D interfaces reduce device hysteresis and improve the open-circuit voltages to values up to 1.20 V, resulting in more efficient devices (PCE of up to 20.4%). This work highlights the exploitation of the chemical reactivity of PQW ligands to tailor the molecular properties of PQW interfaces for improved stability and performance in 2D/3D perovskite photovoltaics.

Photochemically cross-linked quantum well ligands for 2D/3D perovskite photovoltaics with improved photovoltage and stability

Andrew H. Proppe, Mingyang Wei, Bin Chen, Rafael Quintero-Bermudez, Shana O. Kelley, Edward H. Sargent

HXMA

The deployment of perovskite solar cells will rely on further progress in the operating and ambient stability of active layers and interfaces within these materials. Low-dimensional perovskites, also known as perovskite quantum wells (PQWs), utilize organic ligands to protect the perovskite lattice from degradation and offer to improve device stability; combining 2D and 3D perovskites in heterostructures has been shown to take advantage of the high efficiency of the majority 3D active layers and combine it with the improved stability of a thin 2D top layer.

Prior PQWs have relied on relatively weak interwell van der Waals bonding between hydrophobic organic moieties of the ligands. Here we instead use the ligand 4-vinylbenzylammonium to form well-ordered PQWs atop a 3D perovskite layer. The ligands vinyl group is activated using UV light which photochemically forms new covalent bonds among PQWs. UV-cross-linked 2D/3D devices show improved operational stability as well as improved long-term dark stability in air: they retain 90% of their initial efficiency after 2300 h of dark aging compared to a retention of 20% of performance in the case of 3D films. The UV-cross-linked PQWs and 2D/3D interfaces reduce device hysteresis and improve the open-circuit voltages to values up to 1.20 V, resulting in more efficient devices (PCE of up to 20.4%). This work highlights the exploitation of the chemical reactivity of PQW ligands to tailor the molecular properties of PQW interfaces for improved stability and performance in 2D/3D perovskite photovoltaics.

Photochemically cross-linked quantum well ligands for 2D/3D perovskite photovoltaics with improved photovoltage and stability

Andrew H. Proppe, Mingyang Wei, Bin Chen, Rafael Quintero-Bermudez, Shana O. Kelley, Edward H. Sargent

HXMA

The deployment of perovskite solar cells will rely on further progress in the operating and ambient stability of active layers and interfaces within these materials. Low-dimensional perovskites, also known as perovskite quantum wells (PQWs), utilize organic ligands to protect the perovskite lattice from degradation and offer to improve device stability; combining 2D and 3D perovskites in heterostructures has been shown to take advantage of the high efficiency of the majority 3D active layers and combine it with the improved stability of a thin 2D top layer.

Prior PQWs have relied on relatively weak interwell van der Waals bonding between hydrophobic organic moieties of the ligands. Here we instead use the ligand 4-vinylbenzylammonium to form well-ordered PQWs atop a 3D perovskite layer. The ligands vinyl group is activated using UV light which photochemically forms new covalent bonds among PQWs. UV-cross-linked 2D/3D devices show improved operational stability as well as improved long-term dark stability in air: they retain 90% of their initial efficiency after 2300 h of dark aging compared to a retention of 20% of performance in the case of 3D films. The UV-cross-linked PQWs and 2D/3D interfaces reduce device hysteresis and improve the open-circuit voltages to values up to 1.20 V, resulting in more efficient devices (PCE of up to 20.4%). This work highlights the exploitation of the chemical reactivity of PQW ligands to tailor the molecular properties of PQW interfaces for improved stability and performance in 2D/3D perovskite photovoltaics.

Photochemically cross-linked quantum well ligands for 2D/3D perovskite photovoltaics with improved photovoltage and stability

Andrew H. Proppe, Mingyang Wei, Bin Chen, Rafael Quintero-Bermudez, Shana O. Kelley, Edward H. Sargent

HXMA

The deployment of perovskite solar cells will rely on further progress in the operating and ambient stability of active layers and interfaces within these materials. Low-dimensional perovskites, also known as perovskite quantum wells (PQWs), utilize organic ligands to protect the perovskite lattice from degradation and offer to improve device stability; combining 2D and 3D perovskites in heterostructures has been shown to take advantage of the high efficiency of the majority 3D active layers and combine it with the improved stability of a thin 2D top layer.

Prior PQWs have relied on relatively weak interwell van der Waals bonding between hydrophobic organic moieties of the ligands. Here we instead use the ligand 4-vinylbenzylammonium to form well-ordered PQWs atop a 3D perovskite layer. The ligands vinyl group is activated using UV light which photochemically forms new covalent bonds among PQWs. UV-cross-linked 2D/3D devices show improved operational stability as well as improved long-term dark stability in air: they retain 90% of their initial efficiency after 2300 h of dark aging compared to a retention of 20% of performance in the case of 3D films. The UV-cross-linked PQWs and 2D/3D interfaces reduce device hysteresis and improve the open-circuit voltages to values up to 1.20 V, resulting in more efficient devices (PCE of up to 20.4%). This work highlights the exploitation of the chemical reactivity of PQW ligands to tailor the molecular properties of PQW interfaces for improved stability and performance in 2D/3D perovskite photovoltaics.
Low-profile artificial grid dielectric resonator antenna arrays for mm-wave applications

Waqas Mazhar, David M. Klymyshyn, Garth Wells, Aqeel A. Qureshi, Michael Jacobs, Sven Achenbach

SyLMAND

Wideband artificial grid dielectric resonator antenna (GDRA) arrays at 32 GHz for mm-wave applications are presented. The antenna array comprised a GDRA layer and a substrate-integrated waveguide feeding layer. The GDRA array layer is built by embedding small rectangular metal grid structures in low-permittivity dielectric polymethyl methacrylate (PMMA) using deep X-ray lithography (DXRL) and electroforming. The rectangular metallic inclusions significantly increase the effective permittivity of the base material up to 17 by creating high electric flux density regions inside. Low-loss substrate-integrated waveguide (SIW) feeding with longitudinal slots is utilized to excite the GDRA array layer. A 200 μm-thin perforated layer of PMMA is applied between the rectangular grid structures and the SIW feedlines to avoid shorting the metal inclusions to the excitation slots while improving broadband energy coupling to the GDRA layer. The size of the single GDRA array element is only 2.7 mm × 2.7 mm × 0.5 mm (0.29λ₀ × 0.29λ₀ × 0.05λ₀). Four-element (1×4) and eight-element (1×8) GDRA arrays have been fabricated and measured. A measured impedance bandwidth of 6 GHz with a broadside peak gain of 12 dBi and 76% measured radiation efficiency is obtained at 32 GHz for the 1×8 GDRA array.

Monolithic four-element embedded GDRA array template.

Embedded GDRA fabrication process. (a) X-ray exposure and development of the PMMA template. (b) Metal electroplating of exposed cavities. (c) Release of the template with embedded GDRA elements from a silicon wafer. (d) Final GDRA mounted on the feedline circuit.

https://doi.org/10.1109/TAP.2019.2907610
Itinerancy-dependent noncollinear spin textures in SrFeO$_3$, CaFeO$_3$, and CaFeO$_3$/SrFeO$_3$ heterostructures probed via resonant x-ray scattering

Paul C. Rogge, Robert J. Green, Ronny Sutarto, and Steven J. May

REIXS

Noncollinear, multi-q spin textures can give rise to exotic, topologically protected spin structures such as skyrmions, but the reason for their formation over simple single-q structures is not well understood. While lattice frustration and the Dzyaloshinskii-Moriya interaction are known to produce noncollinear spin textures, the role of electron itinerancy in multi-q formation is much less studied. Here we investigated the noncollinear, helical spin structures in epitaxial films of the perovskite oxides SrFeO$_3$ and CaFeO$_3$ using magnetotransport and resonant soft x-ray magnetic diffraction. Metallic SrFeO$_3$ exhibits features in its magnetoresistance that are consistent with its recently proposed multi-q structure. Additionally, the magnetic Bragg peak of SrFeO$_3$ measured at the Fe L-edge resonance energy asymmetrically broadens with decreasing temperature in its multi-q state. In contrast, insulating CaFeO$_3$ has a symmetric scattering peak with an intensity 10 times weaker than SrFeO$_3$. Enhanced magnetic scattering at O K-edge prepeak energies demonstrates the role of a negative charge-transfer energy and the resulting oxygen ligand holes in the magnetic ordering of these ferrates. By measuring the magnetic diffraction of CaFeO$_3$/SrFeO$_3$ superlattices with thick CaFeO$_3$ layers, we find that the CaFeO$_3$ helical ordering is coherent across 1-unit-cell-thick SrFeO$_3$ layers but not 6-unit-cell-thick layers. We conclude that insulating CaFeO$_3$ supports only a simple single-q helical structure, in contrast to metallic SrFeO$_3$ that hosts multi-q structures. Our results provide important insight into the role of electron itinerancy in the formation of multi-q spin structures.

There is growing interest in understanding exotic magnetic structures, such as spin spirals and skyrmions, both as a platform to study the fundamental physical interactions that give rise to magnetism in materials and for potential use in information processing and storage. The work suggests new design principles for engineering complex magnetic states, beyond conventional ferro- and antiferromagnets, in metal oxide materials.

Shi, Rui; Ning; Lixin; Wang, Zhiqiang; Chen, Jiatang; Shum, Adam et al. (2019). Thermal Quenching of Mn2+ Red Luminescence via Efficient Energy Transfer from Eu3+ in BaMgF3. Advanced Optical Materials, 10.1002/adom.201910062.

Sparks, Michael B.; Li, Yifan; De Sant'Anna, Marcelo M.; Tenório, Antonio C. F.; Sant'Anna, Mario P. C.; Siqueira et al. (2019). Application of synchrotron X-ray techniques to orogenic gold studies; examples from the Timmins gold camp. Ore Geology Reviews 104, 603-619. DOI: 10.1016/j.oregeorev.2018.11.020.

Song, Yao; Lu; Jing; Peng, Miaoh; Deng, Zi; Yang, Jianjun et al. (2019). Identification of Cr(VI) speciation in ferrous sulfate-reduced chromite ore processing residue (i.eCoR) and impacts of environmental factors erosion on (Cr(VI) leaching. Journal of Hazardous Materials 373, 389-396. DOI: 10.1016/j.jhazmat.2019.05.067.

Song, Ping; Natale, Giovanniantonio; Wang et al. (2019). 2D and 3D Metal- Organic Framework at the Oil/Water Interface: A Case Study of Copper Benzene-carboxylate. Advanced Materials Interfaces 6(2), 1801139. DOI: 10.1002/admi.2018101139.

Spergel, Steven H.; Mertzanis, Michael E.; Kempson, James S.; Guo, Junqing; Starchia, Sylvia et al. (2019). Discovery of a JAK1/3 Inhibitor and Use of a Prodrug to Demonstrate Efficacy in a Model of Rheumatoid Arthritis. ACS Medicinal Chemistry Letters 10(3), 306-311. DOI: 10.1021/acsmedchemlett.8b00508.

Wang, Min-Jun; Yu, Fu-Da; Sun, Gang; Wang, Jian; Zhou, J-Xiang et al. (2019). Co-regulating the surface and bulk structure of Li-rich layered oxides by a phosphore-doping strategy for high-energy Li-ion batteries. Journal of Materials Chemistry A 7(14), 8302-8314. DOI: 10.1039/c9ta00783k.

Wang, Sihe; Liao, Jiaxuan; Yang, Xiaofei; Liang, Jianneng; Sun, Qian et al. (2019). Designing a highly efficient polysulfide conversion cathod with Li metal as the topomercaste for high-performance and long-life lithium-sulfur batteries. Nano Energy 57, 230-240. DOI: 10.1016/j.nanoen.2018.12.020.

Wei, Qibang; Chen, Mohamed; Zhang, Gaixia; Almesrat, Ali; Chen, Jiatang et al. (2019). Transforming Reed waste into a highly active metal-fuel catalyst for oxygen reduction reaction. Nano Energy 62, 700-708. DOI: 10.1016/j.nanoen.2019.05.083.

Wei, Yong; Xiong, Zi Jian; Li, Jun; Zou, Chunxia; Cao, Christopher W. et al. (2019). Crystal structures of human lysosomal EPIDT reveal homology with the superfamily of bacterial lipoprotein transporters. Communications Biology 2(1). DOI: 10.1038/s42003-018-0262-9. (PDB: 6xe7).

Wells, Garth; Achenbach, Sven; Subramanian, Venkat; Jacobs, Michael; Krymsky, David et al. (2019). SyiMAND: a microfabrication beamline with wide spectral and beam power tuning range at the Canadian Light Source. Journal of Synchrotron Radiation 26(2), 556-570. DOI: 10.1107/s1600577518017721.

Wrobleski, Stephen T.; Moslin, Ryan; Lin, Shuqian; Zhang, Yanlei; Spengler, Steven et al. (2019). Highly Selective Inhibition of Tyrosine Kinase 2 (TYK2) for the Treatment of Autoimmune Diseases: Discovery of the Allosteric Inhibitor BMS-986165. Journal of Medicinal Chemistry 62(11), 652, 549-561. DOI: 10.1021/acs.jmedchem.9b00444.

Xiao, Wei; Sun, Qian; Banis et al. (2019). Unveiling the Interfacial Instability of the Phosphorus/Carbon Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces 11(34), 30763-30773. DOI: 10.1021/acsami.9b07884.

Xin, Xiaoying; Huang, Gordon; An, Chunjiang; Feng, Renfei et al. (2019). Interactive Toxicity of Triclocan and Nano-TiO2 to Green Alga Eremosphaera viridis in Lake Erie: A New Perspective Based on Fourier Transform Infrared Spectroscopy and Synchrotron-Based X-ray Fluorescence Imaging. Environmental Science & Technology 53(16), 9884-9894. DOI: 10.1021/acs.est.9b03117.

Xin, Xiaoying; Huang, Gordon; An, Chunjiang; Rani, Ramirez; Wei, Zhou et al. (2019). Insights into Long-Term Toxicity of Triclocan to Freshwater Green Algae in Lake Erie. Environmental
Moss; D.L.; Park; H.W.; Mettu et al. (2019). Pseudomonas exotoxin A domain III T18H477L. Protein Data Bank: 6ged.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
Perez-Borrañero; C.; Okon; M.; Lin et al. (2019). ETS1 in complex with synthetic SRR mimic. Protein Data Bank: 6n0m.
The Canadian Light Source is a national research facility of the University of Saskatchewan.