Though a synchrotron is not the only way to generate IR, UV or X-Ray light, we experience substantial benefits in brightness, experiment quality and speed, along with increased ability to select specific light wavelengths. Synchrotron light is emitted when the path of an electron beam is altered via extremely powerful magnets. 

Brightness or Flux

If you were to expose a 1 mm x 1mm sample, similar to what a researcher might put under a regular light microscope, to a number of different light sources and measure the amount of energy the matter in that sample interacted with, you would find that the energy generated by a synchrotron using insertion devices is considerably higher than what is produced by other light sources.

synchrotron brightness and flux


Generally speaking, synchrotron sources pack more photons into a smaller beam of light. This offers researchers more information about their sample and makes a greater variety of techniques available to use to learn about their sample.

In situ Experiments

Another advantage to some synchrotron techniques is the ability to conduct experiments in situ, or as they are – without treatment. There are a number of research techniques that require the scientist to treat their sample (crush it; make a solution; slice it; etc). While this is also required for some synchrotron techniques, there are also some that allow for the sample to be analyzed without treatment or with less treatment, which can be a significant advantage.

Tuneability or Ability to Select Specific Light

By producing high flux light across a significant portion of the spectrum, a synchrotron offers many different techniques to researchers in one building. In order to gather information, the wavelength of the light has to be appropriate for the size of the matter of interest. Shorter wavelengths allow scientists to gather information about smaller things.

In addition, each element absorbs energy at a known level. Being able to select a specific wavelength, or range of wavelengths, allows researchers the flexibility to direct their research towards specific questions.

wavelenght and scale


Due to the extreme brightness of the light, it does not take as long to conduct the same experiment using a synchrotron source of light as it does with a ‘table top’ source for some techniques.

Connect with us

By providing your email address, you are expressing consent to receive electronic messages from the Canadian Light Source. You can unsubscribe from these messages at any time.

Monthly Newsletter

**Newsletters are sent approximately once a month**

Events Notifications

If you’re looking for information on how you can use CLS techniques in your research program, please contact us using this form.

Example queries may include: Feasibility around a potential experiment? A scientific problem we can help you solve? Is your question related to a specific technique? Do you want to know more about how to apply for beamtime?