Media RELEASE

FOR IMMEDIATE RELEASE

January 28, 2013

Scientists use CLS to identify key protein in stopping viruses

SASKATOON – Using the Canadian Light Source (CLS) synchrotron, researchers have determined the structure of a key protein that stops viruses from spreading, an important step towards developing new ways of fighting viral diseases.

Viruses like influenza, SARS, Hepatitis C, West Nile fever and polio are small, infectious agents that can spread quickly throughout the body by replicating their genetic code, or ribonucleic acid (RNA).

During the replication process, small proteins are needed to synthesize the virus throughout the body. However some proteins actually inhibit the RNA from replicating, keeping the virus from spreading. 

While scientists were aware of the antiviral protein molecules, such as the IFIT protein, they were not certain what their molecular structures looked like and how they reacted with the viral RNA. 

Making use of data collected at the CLS, researchers from McGill University and the Austrian Research Center for Molecular Medicine (CeMM) discovered the molecular blueprint behind the IFIT protein. The discovery will help scientists develop new drugs for combatting a wide-range of immune system disorders.

The discovery was made by teams led by Bhushan Nagar, professor of biochemistry at McGill’s Faculty of Medicine and Dr. Giulio Superti-Furga at CeMM. The results were published recently in the journal Nature where the article describes how the IFIT protein binds to foreign RNA, allowing the immune system to distinguish “self from non self”.

“This discovery of the IFIT protein structure is very rewarding to us at the Canadian Light Source,” said Shaun Labiuk, research associate with the Canadian Macromolecular Crystallography Facility (CMCF) at the CLS. “We are always excited when the work we put into helping researchers, and maintaining the smooth operation of our beamlines, makes high-calibre of research like this possible.”

The CMCF scientists operate two X-ray crystallography beamlines to conduct high-resolution structural studies of proteins, nucleic acids and other macromolecules.

Since 2006, Researchers have used data collected at the CLS synchrotron to solve crystal structures of 328 new proteins, many of which help researchers develop new ways of combatting diseases.  

 

-30-

About the CLS:

The Canadian Light Source is Canada’s national centre for synchrotron research and a global centre of excellence in synchrotron science and its applications. Located on the University of Saskatchewan campus in Saskatoon, the CLS has hosted 2,600 researchers from academic institutions, government, and industry from across Canada and 20 countries on over 5,600 user visits, delivering over 20,000 experimental shifts to users since 2005. CLS operations are funded by Western Economic Diversification Canada, Natural Sciences and Engineering Research Council, National Research Council of Canada, Canadian Institutes of Health Research, the Government of Saskatchewan and the University of Saskatchewan.

Synchrotrons work by accelerating electrons in a tube at nearly the speed of light using powerful magnets and radio frequency waves. By manipulating the electrons, scientists can select different forms of very bright light using a spectrum of X-ray, infrared, and ultraviolet light to conduct experiments.

Synchrotrons are used to probe the structure of matter and analyze a host of physical, chemical, geological and biological processes. Information obtained by scientists can be used to help design new drugs, examine the structure of surfaces in order to develop more effective motor oils, build more powerful computer chips, develop new materials for safer medical implants, and help clean-up mining wastes, to name a few applications.

For more information visit  www.lightsource.ca/media/quickfacts.php.

For photos to accompany this story and more images from the CLS visit http://www.flickr.com/photos/clsresoff/

 

For more information contact:

Mark A. Ferguson / ars-grafik-linkedin-icon-20x20 
Communications Coordinator
(306) 657-3739
Canadian Light Source Inc.
ars-grafik-facebook-icon ars-grafik-flickr-icon ars-grafik-twitter-icon