30 Oct 2014

Developing the battery of the future

CLS scientists explore novel experimental techniques, materials

SASKATOON – The search for the next generation of batteries has led researchers at the Canadian Light Source synchrotron to try new methods and materials that could lead to the development of safer, cheaper, more powerful, and longer-lasting power sources, to be used in almost everything, from vehicles to phones.

“Typically, battery research involves cooking chemicals together to create new materials,” said Dr. Jigang Zhou, CLS industrial staff scientist. The performance of these materials is measured by testing the current, voltage, charge time, and number of charge cycles the materials can take.

“Essentially, you take a stab in the dark and see how good your aim was,” said Zhou.

But there are problems with this method, and researchers are still uncertain why some materials work better than others. So Zhou and other researchers are using the synchrotron to examine these materials in a whole new way.

If you think of a typical AA battery, the kind you would find in most TV remotes, Zhou said, there is a positive and a negative end called an electrode. Although a number of materials can be used for these electrodes, Zhou and his team are using a novel lithium-nickel-manganese-oxide (LNMO) material on the positive electrode that could provide batteries with significantly higher voltage.

While the higher voltage of this material can offer a real advantage, it tends to dry out the electrolyte – a liquid necessary for batteries to work properly. Understanding the role that each element in LNMO plays is critical to furthering his research into why the electrolyte dries up.

Synchrotron X-rays allow for the visualization of the LNMO in such fine detail that he can identify where the material is breaking down the electrolyte liquid, and determine what is happening and how to prevent the breakdown in those places.

For the negative electrode however, silicon is a promising and cheap material that researchers are also having success with.

“Silicon offers the potential for a higher capacity battery that could hold more charge storage per gram when compared to conventional batteries,” he said. “Such a battery could work longer after a single charge.”

Zhou stated “the capacity for silicon is 10 times greater than current negative electrode materials.” However, this material comes with its own challenges. When silicon is used in a battery, its volume changes more greatly between when the battery is fully charged and when it has used up its charge. These changes in volume during charging cycles cause the battery to break down over time, so researchers are working on ways to make silicon more stable so it can be used commercially.

Zhou believes that since there are currently no batteries on the market using silicon-LNMO electrodes, research into perfecting these materials could lead to new, better batteries.

Canadian Light Source industrial staff scientists Jigang Zhou and Toby Bond conduct research on battery cells using the IDEAS beamline. Their research and collaborations could lead to the development of safer, cheaper, more powerful, and longer-lasting batteries for everything from phones to electric vehicles.
This photo and others to accompany the story are available with a Creative Commons license in the CLS image gallery

About the CLS:

The Canadian Light Source is Canada’s national centre for synchrotron research and a global centre of excellence in synchrotron science and its applications. Located on the University of Saskatchewan campus in Saskatoon, the CLS has hosted over 2,000 researchers from academic institutions, government, and industry from 10 provinces and 2 territories; delivered over 32,000 experimental shifts; received over 8,300 user visits; and provided a scientific service critical in over 1,000 scientific publications, since beginning operations in 2005.

CLS operations are funded by Canada Foundation for Innovation, Natural Sciences and Engineering Research Council, Western Economic Diversification Canada, National Research Council of Canada, Canadian Institutes of Health Research, the Government of Saskatchewan and the University of Saskatchewan.

Synchrotrons work by accelerating electrons in a tube to nearly the speed of light using powerful magnets and radio frequency waves. By manipulating the electrons, scientists can select different forms of very bright light using a spectrum of X-ray, infrared, and ultraviolet light to conduct experiments.

Synchrotrons are used to probe the structure of matter and analyze a host of physical, chemical, geological and biological processes. Information obtained by scientists can be used to help design new drugs, examine the structure of surfaces in order to develop more effective motor oils, build more powerful computer chips, develop new materials for safer medical implants, and help clean up mining wastes, to name a few applications.

For more information visit the CLS website 
For photos to accompany this story and more images from the CLS visit our Flickr gallery

how can we help?

If you’re looking for information on how you can use CLS techniques in your research program, please contact us using this form.

Example queries may include: Feasibility around a potential experiment? A scientific problem we can help you solve? Is your question related to a specific technique? Do you want to know more about how to apply for beamtime?

Newsletter Signup

By providing your email address, you are expressing consent to receive electronic messages from the Canadian Light Source. You can unsubscribe from these messages at any time.

**Newsletters are sent approximately once a month**